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Abstract-It is shown how St. Venant's problem of torsion of elastic bars can be formulated so as to fit readily
into the procedure for deriving approximate equations of motion of bars by expansion of the displacements in
a double series of powers of the transverse coordinates. Applications are exhibited for bars with elliptic,
equilateral triangular and rectangular cross-sections.

INTRODUCTION

Approximate equations of motion of elastic bars, obtained by expansion of displacements in a
double power series of the transverse coordinates and subsequent truncation, are not as fully
developed as those for plates. This is especially true for motions involving torsion, in which the
warping of the cross-section introduces a complication which is present no matter how low the
frequency and, in fact, persists even in the equilibrium state. In uniform extension or flexure of
cylindrical or prismatic bars of isotropic materials, plane sections remain plane regardless of their
contour, so that only linear terms in the power series expansion are necessary. In uniform
torsion, on the other hand, plane sections remain plane only for the circular section. For all other
sections axial warping occurs-and the character of the warping is different for different sections.
There are exact solutions of the St. Venant torsion problem for a great many cross-sectional
shapes; but they are not as easily incorporated in equations of motion obtained by power series
expansion as they would be if they themselves had been similarly obtained.

In a previous paper[l] it was shown how the power series formulation of the problem of
torsion of isotropic bars, by Bleustein and Stanley [2], can be extended to accommodate
appropriate warping and produce suitable torsional rigidity without the introduction of correction
factors: applied to moments of area of the section or otherwise. In the present paper, the direct
connection of the series treatment with St. Venant's method of solution is demonstrated. The
torsion function, instead of being governed by Laplace's equation, is expressed as a double
power series, the coefficients of which are determined by simultaneous linear algebraic equations,
deduced from a variational principle and equal in number to that of the terms of the series
retained to represent the axial displacement. These terms are not necessarily all the early terms of
the series up to a certain order, but are only a few isolated terms, judiciously chosen. For
example, if the St. Venant torsion function is a polynomial (the simplest are for the elliptic and
equilateral triangular sections) those are the only terms retained and the resulting torsional
rigidity from the power series solution is exact. Otherwise, as in the case of the rectangular
section for which the torsion function is an infinite series of transcendental functions, a limited
selection of terms in the power series is retained as an approximation. Thus, for the square, a
two-term approximation gives the torsional rigidity with an error of about 0·1 per cent. For other
rectangular sections, with side-ratio k, say, a four-term approximation gives torsional rigidities
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with errors increasing from the 0·1 per cent for k = 1 to about 3 per cent around k = 10 and then
diminishing to zero as k approaches infinity.

The criterion of acceptability of the choice of the terms to be retained in the power series is the
torsional rigidity, as that determines the torque which balances the inertia in the equation of
torsional motion and thus controls the long-wave-speed which, along with the length of the bar
and the end-conditions, fixes the lower natural frequencies of torsional vibration.

The procedure described here can readily be applied to vibrations of anisotropic bars in which
the torsional motion is coupled with extensional and flexural motions [3].

DERIVATION OF EQUATIONS

The St. Venant problem of torsion of cylindrical or prismatic bars of isotropic material may be
stated as follows (Ref. [4], p. 311). With the generators of the surface parallel to the axis X3 of a
rectangular coordinate system x;, i = 1, 2, 3, the displacement components are taken to be

where T is the twist and cp is a function of XI and X2 satisfying Laplace's equation

a2
'{! + a2

cp _ 0
2 2-

aXI aX2

in the interior of the bar and

(1)

(2)

(3)

on the cylindrical or prismatic surface, to which dv is the element of the outward drawn normal.
The torsional rigidity is the ratio of the torque M to the twist and is given by

(4)

where /.L is the modulus of rigidity and the integration is over the area of the section.
Instead of seeking solutions of (2) satisfying (3), we take cp as a double series of powers of the

coordinates X [ and X2:

(5)

in which the U3 m.n are constants. The displacements (1) may then be written as

(6)

where utI = - X3, U2"O = X3; so that the components of strain:
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become SII = S22 = S33 = SI2 = 0 and

00

S3a = L: L: Xl
m

X2"S;",;", Q' = 1,2,
m=O n=O

where

and, otherwise,

The components of stress are Til = Tn = T33 = TI2 = 0 and

00

T3a =2/LS3a =2/L L: L: Xl
m

X2"S3a, Q' = 1,2.
m=O n =0

These components are substituted in the variational equation

323

(7)

(8)

(9)

(10)

(11)

where I A () dA is the integral over the area of the cross-section, 2/ is the length of the bar,
Is () dS is the integral over the surface of the bar, including the end faces, and tj is the surface
traction. On substituting (6)-(10) in (11), and performing the integrations where possible, we find

where

T m
." J T m" dA F m

•• 1. t m "d t m." J t m "dA3a = A 3aX l X2 , j = Tc jXl X2 S, j = A jXl X2 (15)

and ~c ( ) dS is the line integral around the bounding curve of the section.
The condition that the cylindrical surface be free of traction requires Ft·" = O. Then, from

(14), we find the equilibrium equations, one for each U3 m ••,

(16)

and the requirement [t3m'"]~1 = 0, i.e. there can be no tension applied to the bar. The torque,
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(2
1
.
0

- (1°.1, applied to the end faces is, from (12) and (13),

(17)

From the first of (15) and (7HI0), we find

where

1m+P •n+q - J m+p n+q dA- Xl X2 •
A

Upon substituting (18) and (19) in (16) and (17), we find the equilibrium equations

2: 2: [m(p + 1)1m+p-l,n+qu/+l·q + n(q + l)1m+p,n+q-lu/,q+l] == m1m-l,n+1 - n1m+l,n-l
p-o q-O

and the torsional rigidity

(18)

(19)

(20)

C == p,{10,2 + 12,0 - i i [(p + 1)1p.q+l U3 P +1
•
q - (q + 1)JP+l.qU3P.q+l]}. (21)

P -0 q ~o

ELLIPSE

The St. Venant torsion function for the bar of elliptic cross-section with semi-principal axes a
and b along Xl and X2, respectively, is

Hence, in the power series for U3, we retain only u/1
• The equilibrium equations (16) then reduce

to the single equation for m == L n 1:

(22)

where, from (18) and (19),

Upon substituting these values in (22) and solving for u/,\ we find

and this, inserted in (21), yields the torsional rigidity



Solution of St. Venant's torsion problem by power series

From (20) we have, for the ellipse,

Hence,

which is the 81. Venant torsional rigidity (Ref.[4J, p. 316).
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EQUILATERAL TRIANGLE

If the cross-section is an equilateral triangle with sides given by the equation (Ref. [4], p. 319)

the torsion function cp is

cp = (3X/X2 - x/)/6a. (23)

Hence, in the power series we retain only U/,1 and U30,3; so that the equilibrium equations (16)
become, with m = 2, n = 1 and m = 0, n = 3:

From (18) and (19),

T~il = ILT( - 1°,2 +212,2u/,1), T~io = ILT(I3,0 + I 4,ou/,1 +3I2,2u30,3),

T~? = ILT(II,2 + I 2.2u/,1 +3Io"u3o.3).

The equilibrium equations then become a pair of simultaneous equations for u/·I and U30,3:

from which

U/,l = 3[1°''(211,2 _ 13,°) + I I,2I2,2]/il,

U30,3 = - [1 1,2(412,2 +14 ,°) +12,2(211,2 - I 3,o)]/il,

where

The torsional rigidity, from (21) with only U/,I and U30,3, is

(24)
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Then, employing the values (24) of u/· 1 and U30.3 and noting that, from (20),

we find

(25)

If we insert the St. Venant torsion function (23) in the integrand in (4) and perform the integration
over the triangular area, we find the same result as (25) for the torsional rigidity (Ref. [5], p. 266).

RECTANGLE

St. Venant's torsion function for the bar of rectangular section XI = ± a, X2 = ± b is (Ref. [4], p.
318)

( )
(.-1)/2 . h n7TXl . n7TX2- sm 2iJsm2iJ

3 3 h n7Ta
n 7T cos '2b

As an approximation, we retain only U3 t.1, U3 t.3, u/·1, u/·3in the power series expression (5) for cpo
Then the equilibrium equations (16) are

T~il + T~il = 0, T~i3 +3T~? =: 0,

3T~il + T~io =0, T~i3 + T~:,z =0,

and we find components of stress, from (18) and (19),

T~i' = J,LT(-JO
•
2 + JO

•
2U3 1

,1 + JO
•
4U3 1

•
3+3J2.2U/· 1 +3J2.4U/·3),

T~io = J,LT(I2.0 + J2.0 U/l +3J2.2U/·3+ J4.0U/1 +3J4.2U/3),

T~i3 = J,LT(- J0.4 + JO
•
4U3 t.1 + JO

•
6U3 1.3 +3J2.4u/·1 +3J2.6U/·3),

T~22 = J,LT(I2.2 + J2.2 U/·l +3J2.4U31.3+ J4.2 U/l +3r·4u/·3),

T~il = J,LT(- J2.2 + J2.2 U/l + J2.4 U/3 +3J4.2U/' +3J4.4U/3),

T~f = J,LT(r·o + J4.0U/l +3J4.2U31.3+ J6.0U/·1 +3r·2u/3),

T~i3 = J,LT(-J2.4+ J2.4 U/1 + J2.6U3'·3 +3r.4u/l +3r·6u/·3),

T~? = J,LT(r·2+ J4.2 U/l +3J4.4UJ 1.3 + J6.2 U/1 +3r.4u/\

(26)

(27)

Upon substituting (27) in (26), we obtain a set of four simultaneous equations for the four U3 m •• :

(28)
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where, with ["'.n =4a m
+

1bn
+

l /(m +1)(n + 1) and k = bla,
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all = 1°·2 + 12.0= 4a 3b (1 + k2)/3,

a21 =r.4 +312
•
2 =4a 3b3(S +3e)/1S,

a31 = r·o +312
•
2 = 4a sb(3 +Se)/lS,

a41 = 12
•
4 +14

•
2 =4a sb3(1 +e)/IS,

a22 = 912
•
4 + 1°·6 = 4a3bs(21 +Se)/3S,

CI = r,2_ 12
,0 = -4a 3b(1- e)/3,

C2 = 1°·4 - 312.2 = -4a3b3(5 - 3e)/15,

The solution of the four equations (28) is

a32 =3(12,4 +14
•
2
) =4a 5 b3(1 +e)/5,

a42 = 314
,4 + 12

•
6 = 4a sbs(63 + 2Se)/S2S,

a33 = 914
,2 +16

,0 =4a7b(S +21e)/3S,

a43 = 314
,4 +16

,2 = 4a7b 3(25 +63e)/S25,

a44 = 14
,6 + r.4 = 4a7b s(1 + e)/3S,

C3 = 312
•
2

- 14
,0 = -4a 5 b (3 - Se)/15,

C4 = 12.4 - r· 2 = -4a sb3(1- e)/1S.

U31
,1 = (e - 1)(14 +375k2+ 14e)/~,

U/,3 = 3Ski(I-6e-7e)lb2~,

u/ I = 3Sk\7 +6e- e)/a2~,

3U33.3 245e(e-l)/a2b2~

where

The torsional rigidity, from (21), is

or

where

(29)

(30)

Values of k I for various values of k are listed in Table 1along with the corresponding values (Ref.

Table L Torsional rigidity coefficient in equation (30):
k, (four terms of power series approximation); k; (St.

Venant solution)

k '" bla k, k; b/a k, k;

1-0 0,1407 0·1406 4 0-286 0·281
1·2 0·166 0-166 5 0-298 0·291
1·5 0-1% 0·1% 10 0·322 0·312
2·0 0·230 0·229 20 0,330 0·323
2-5 0·251 0-249 100 0·333 0·331
3·0 0-266 0·263 '" 1/3 1/3



328 R. D. MINDLIN

[5], p. 277) calculated from St. Venant's solution. It may be seen, from (29), that for the square
section (k = 1), u/1 and u/3 are zero; the approximation reduces to a two-term one with

This simple approximation yields a torsional rigidity in error by only about 0·1 per cent. As k
increases from unity, the error in k1 increases to about 3 per cent around k = 10 and then
diminishes to zero as k approaches infinity, at which limit u/3

, u/· 1 and u/·3
, in (29), are zero and

u/· 1 is unity, yielding the correct form for <p:

at that limit. The errors may be reduced by retaining more terms in the series, the next group
being u/·5

, u/·5
, u/·5

, u/·3
, u/·1

•
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